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Certain problems of the structural mechanics of composite materials cannot be solved 
in the framework of a linear theory (for example, problems of stability and wave propagation 
in prestrained inhomogeneous materials). The present paper proposes a method for calcula- 
tion of macroscopic elastic moduli of the second and third orders. A microinhomogeneous 
medium is investigated in the approximation of a geometrically linear theory. Estimates 
of the moments of strain fields in the components are obtained by using a nonlinear formula- 
tion of the effective field method [1-4]. The method rests on a solution of the problem 
of binary interaction of inclusions present in the effective field. The deformations within 
each inclusion are assumed to be homogeneous. The second moments of the strain fields in 
the components are assumed to be uniform. 

i. General Relations. In a macrovolume w with the characteristic function W, we con- 
sider a mixture of elastic components whose mechanical properties are described by a geo- 
metrically linear theory (under the classification of [5], it is the second variant of small 
initial deformations). The strain tensor eij is linked with the components of the displace- 

ment vector u i by the relation 

The characteristic equation appears as 

< i  = (u~ ,~+u~ ,~ ) /2 ,  

o = Le +~e | e. (I.i) 

In particular, for the Murnaghan potential 

cD = (t12) XA~ + ~A 2 (a/3) A~ + bA,A~ + (el3) A 3 ( 1 . 2  ) 

(A I = eij, A 2 = ~ijeij, A 3 = r are the algebraic invariants of the strain tensors). 

We obtain from (i.i) and (1.2) and the relation oij = (i/2)(8/Seij + 8/Ssji)~ the following 

expressions : 
, 1 2 1 (t/3) 6~38~l, L~jhz = 3~N~jhz + 2~tNijhl, Ni,ikl = 

72 1 h Ukl = Ium --  N~jhl, I o , ~  = (6~m6~ + 6i,,6j~)/2, 

3ag~jNmnm + b (Sulmnh l + 5mnIijhl + 6hlImni5) + CJiimnhl, C ~ i j h l m n  ~ 1 

Jij ,~hz = (Iip~jvjm,~ + IipmnIl,;~.l) [2" 

A m a t r i x  w i t h  a c h a r a c t e r i s t i c  f u n c t i o n  V 0 and t h e  m o d u l i  L0,Lf0 c o n t a i n s  t h e  s e t  X = (Vk, 

L ( k )  ' ~r o f  e l l i p s o i d s  v k w i t h  c h a r a c t e r i s t i c  f u n c t i o n s  Vk, t h e  h a l f - a x e s  ah, t h e  o r i e n -  

t a t i o n s  wk, t h e  c e n t e r s  x k ,  and t h e  m o d u l i  L ( k ) ,  C/~(h) �9 

Here and in what follows, we use the notations of tensor equations, omitting indices. 
The product of tensors is assumed to be their convolution by inner indices. The direct 
tensor product is denoted by the symbol ~. Standard hypotheses for microinhomogeneous media 
are adopted [l-6J: All random fields are statistically homogeneous and ergodic. Thus, 
the statistical averaging over an ensemble can be replaced by averaging over a characteris- 
tic volume: 

<(. )> = (rues u~) -1 f (.)W'(r)dr, <(. )>~ = (rues v~) -1 S (")Vc~(r)dr 

( ~  = O, ~ . . . .  ). 
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We also use the notation <(.)Ix2; Xm> for the conditional average over an ensemble X under 
the condition that there are inclusions at the points xz and x~, and xz # x~. The compo- 
nents refer to different phases X~ if at least one of the parameters a=, ~=, L(=),~ (=) has 
different values. 

The equilibrium equation for a microinhomogeneous medium, disregarding mass forces, 
appears as 

V [(Lo + Li(x))e(x) q- (,gfo + ,Ef'~(x))e(x) | e(x)l = 0, 

where V is the operation of symmetrized gradients: 

(1.3) 

L 1 (x) = E vk (x) (L  (h) - -  Lo), ~f~ = E Vh (x) (~f(h) _ ~ o ) .  
h h 

Equation (1.3) is nonlinear. For obtaining final results that can be visualized, we adopt 
linearization of (1.3), which assumes the homogeneity of e(x) | g(x)within the phase X~: 

= ~ ( ~ )  )<E(x) e ( x )  | s ( x )  ~ < e ( x )  | g ( x ) > a  a t  x e X=. We d e n o t e  q ( x )  (L o + L z ( ~ ) ) - ~ ( ~ f o + ~  

e(x)>~, q(x) = q0 at x �9 X0, qz(x) = ~ (q(x) - q0)Vk. The rule of calculation of the 
h=l 

piecewise constant tensor of the second rank q is described below. In our notations, (1.3) 
appears as 

V(Lo + L~(x))[e(x) q- q(x)l = 0 (1.4) 

Within notations, it coincides with its counterpart relation from linear theories of gas- 
saturated porous media [2] and thermal elasticity [3] of microinhomogeneous media. Thus, 
we can employ for solution of (1.4) the techniques of the effective field method proposed 
earlier [i-3]. Specifically, with the aid of the fundamental solution G of the equation 
for the equilibriom of a homogeneous linearly elastic medium with the modulus L0, we reduce 
(1.4) to an integral equation for modified deformation e = e - q0: 

e(x) = <e> + S VVG(X - -  y){L,(g)e(y)-- (L o + L,(g))q,(y) - -  [<Lie > - -  <(L o A- L,)q~> ldg. ( 1 . 5 )  

E x p r e s s i n g  ( 1 . 5 )  i n  s t r e s s e s  and  t a k i n g  i n t o  a c c o u n t  t h a t  <o> = o ~  we o b t a i n  

o(x) = ~o + ] F ( / - -  y){M~(g)o(g)-- q~(g) - -  [<M,a> - -  <q~> ]}dy. 

H e r e ,  M o = L o - Z ;  M o + Mz(x )  ~ M o + Mz(k )  ~ (L o - L z ( k ) )  -1 a t  x e v k i s  t h e  c o m p l i a n c e  o f  

t h e  k - t h  i n c l u s i o n ;  F (x  - y )  = - L o ( I 6 ( x  - y )  + VVG(x - Y ) L 0 ) ;  6 i s  t h e  6 - f u n c t i o n .  

The effective moduli of the second and third orders in the relation 

<~> = L, <e> q- 5f, <s> | <s> 

can be found by averaging local equation (i.i): 

(1.6) 

L ,  = Lo + <L1A,>, ~ f ,  = ~. \'~Ir(v)='(~')\~1/v+ ~, . ~  cP(a)~-(~)~2 , (1 . 7 )  
~ = 1  cz--O 

where ~ = <V~>; the tensors of the fourth rank A*, the sixth rank ~'i, and the eighth rank 
Sr 2 define the average concentration of deformations in a component X~ m x 

<e>= ---- A* <e> + Sr I (x) <e> | <e>, <e | e>= = ~r 2 (x) <e> | <e>. ( i. 8) 

2. Evaluation of Average Deformations in the Components. We fix an arbitrary realiza- 
tion of the field X and examine an effective field e(x), x e Vk, which contains an inclusion 

e-(x) = <e> + ] U(x - -  y){V(y; x)[L~(y)e(y) + (Lo + L,(y))q~(y)] - -  [<L,e> + <(Lo + L,)q~> ]}dy ( 2 . 1 )  

( v  (y; x) = v (y) - v~ (x), v (v) = ~=~E v~ (y), u = vvC) .  

The field X, and therefore also e, are random. In order to determine <~>, we will make 
use of the hypothesis of the effective field method described in detail in [I, 2]: I) the 
field of e is homogeneous in the neighborhood of each point inclusion; 2) every n (n > i) 

l 

inclusions exist in a generally inhomogenenous field el,.. .,n of their own. 
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From the homogeneous field ~ we can determined unequivocally a homogeneous field of 
strains inside each inclusion [2]: 

e(x) = Ak (e--P~, (L o + Lia))q~), A~,= ( I  + P~L~)) -~, 

w h e r e  x e v k and  t h e  c o n s t a n t  t e n s o r  Pk = - S U(x  - y ) V k ( y ) d y  (x  e Vk) i s  known.  

( 2 . 2 )  

We will describe the structure of a composite material by a function ~(Vm/V k) - the 

conditional density of the distribution of the m-th inclusion in the region v m at a fixed 

inclusion in the region v m at a fixed inclusion in the region v k. Since inclusions do not 

overlap, we assume that 

(vm Iv~) - -  * (~m) (t  - -  V~m) fhm (I r [) (rues W) -~. ( 2 . 3  ) 

From t h e  n o r m a l i z a t i o n  c o n d i t i o n  <O(0hn)> = 1 i n  t h e  a b s e n c e  o f  t h e  n e a r  o d e r  f k m ( I r l )  = n v ,  

v = 1, 2 ,  . . . ,  i f  v m e Xv; n v a c o u n t a b l e  c o n c e n t r a t i o n  o f  i n c l u s i o n s  o f  t h e  c o m p o n e n t s  

Xv, i s  l i n k e d  w i t h  t h e  v o l u m e t r i c  c o n c e n t r a t i o n  ~9 ( 4 / 3 ) v  a 2 3 = avava v n v ;  Vkm' i s  t h e  c h a r a c t e r -  
. i i 

i s t i c  f u n c t i o n  o f  a s p h e r e  Vkm' w i t h  t h e  c e n t e r  x k and  t h e  r a d i u s  a h m = m l n a m + m a x a h .  

Averaging (2.1) on the set X('IXk), by means of (2.3) and assuming hypothesis i of the 

effective field, we obtain 

<eh> = <e> + j" U(x -- y){<IL~A(y)e(y) + A(y)(L o + Li)q~lV(y; x)ly; x> --  [<L~Ae> + <A(L o + L1)q,> l}dy. ( 2 . 5 )  

For calculating conditional moments in (2.4), we adopt hypothesis 2 with n = 2 and the 
first approximations of the solution of the problem of binary interaction of inclusions in 
a homogeneous matrix [3]. By analogy with [3], we write 

e = D(<e> + <F>), (2.5) 

D = ( I - -  Po </l~> --  ~ <J12 ( ] -  Vtl2)/12>>12dx2) -1, 

F = PoRql + ~ (( T12 ( t  - -  V~)/12q1>>12 dx2, 

where R k = Ll(k)Ak~k; ~k = mesvk; P0 = P(Vkm'); Jl2 = UR2UI~I; T12 = UR2UAI(L0 + Lx (k)); 

<<'}~m denote the operation of averaging with respect to mk, ~m, a~m and the positions x m 

of the sphere of radius Irl = IXk- Xml with center at x m. 

From (2.5) we determine the mean strain in the components of the inclusions X v (9 = 
i, 2, 3, ...) and the matrix X0: 

<%> = Ar - -  P~(Lo -4- L~)D-lql + qo + <F>}, ( 2 . 6 )  

(t - -  ~) <e>o = <e> . -  ~ ~v<e>v, A*----AvD, 
"r 

* =  ~) , ~ = < y > .  Ao (1--- <ADV>) (~ --  -~ 

E x p r e s s i o n s  o f  A* in  ( 2 . 6 )  make i t  p o s s i b l e  t o  d e t e r m i n e  t h e  e f f e c t i v e  s e c o n d - o r d e r  
m o d u l u s  L ,  f r o m  ( 1 . 7 ) .  A s s u m i n g  e q u i p r o b a b l e  o r i e n t a t i o n  o f  i n c l u s i o n s ,  t h e  t e n s o r s  <R>, 
((3-12)>12, ((T12))12 ' I), L, are isotropic, and 

<(S~z}12 = (3J12, 2d22), ((Tn)>n ----- (3T~2, 2T~2), 3J~2 = 2~ 2 (35)  (2~: ) l r  I-s, 

2J~2 = (2/5) [~2 (3~2) ( ~ )  + (2~1) (2~2) (772 _ ~12/4 + 2~q)] ] r I -s ,  

g = (3ko + 4po) -~, ~1 = (3poo) -~, ? = (3ko + 4~o)[3~o(3ko + 4~o)]-L 

where for the isotropic tensor Bijk~ we adopt the notations 

B = (3B 1, 2B z) = 3B1W 1 + 2B2N 2, 
3 

<L~i)Ai>lI  a~---- (3ki, 2 ~ ) ,  <LaA> = S L~A,(o))do). 
j=l 

i, 2T12 2 we must in 2J12 2 replace (3k l, 2~ I) with (3t z, 2t 2) = <(L 0 + To obtain 3T12 
3 

( I))AI> I I a i .  j=l Li 
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3. Calculation of ~r~,~-~,~,. So far we have assumed that q0 and qz are known. How- 
ever, by assumption, these tensors are dependent on the second moments of strain fields 
in the components. In that case, problem (1.3) is nonlinear. For estimating constant ten- 
sors qa (a = 0, i, ...) we employ the method of successive approximations from [4]: 

q~(n+z) = <~(n) | ~(n)>~(L ~ + Lz(a)(x))-~(~0q- ~,~)x)), qa(0) = 0. The values of <e (n) | 

For reducing derivations e(n)> are estimated by using the method of [i] for known q~(n)~(0)>a 

in (1.8) we take the first iterative approximation of <e(0) | and <e(z)>z. The cal- 

culation of the second moment of <e(~ | r176 a can be conducted by constructing a correla- 

tion function of strain fields by using the method of [i]. If in that case the solution 
of the problem of binary interaction of inclusions [I] by successive approximations takes 
into account, as in (2.5), the terms of the series that decrease at infinity not faster 
than Jz~, it can be demonstrated that 

<do) | e(o)>~ = <~(o)>~ | <~(o)>~ (~ : O, i . . . .  ). ( 3 . 1 )  

Comparing (1.8) with (2.6) and (3.1), we obtain 

~"~) = A~ | A~, ~t-~) = A~D [L['~f0~-~ ) -  P .D  -~ (~f(v)~-~) _ 

+ ~{UR2U[~<~)A,$-,--LA~LTI.~o~-~) ] (i --V~,)/,,),~dx~}-- L T ~ f 0 ~  ) ( ~  = 0,  t . . . .  ; v = I ,  2 . . . .  ). 

Likewise, we define ~-~). Substituting the values of ~-~),~; from (3.1) into (1.7), we find 
the effective elastic modulus of the third order: 

~ ,  = ~, ~a~f (~) | A* | A* | A*. (3 .2)  
~ = 0  

T h i s  e x p r e s s i o n  i s  a g e n e r a l i z a t i o n  e x t e n d i n g  t h e  c o r r e s p o n d i n g  r e l a t i o n  f rom [6] t o  an a r b i -  
t r a r y  number  o f  c o m p o n e n t s .  Fo r  t w o - c o m p o n e n t  c o m p o s i t e  m a t e r i a l s ,  ( 3 . 2 )  c o i n c i d e s  w i t h i n  
notations with the expression in [6]. The sole difference is in specific equations for ha*, 

i.e., in the solution of the linearly elastic problem. 

Generally, the tensors Aa*, and therefore also L,, ~, are anisotropic. At an equipro- 

bable orientation of the inclusions Aa* , L,,~,are isotropic: Aa* = (3ra, 2sa), 

C 2 a. = ~_~ 3~c, [ga.r~ + 3b=p~r= (3r= + 2s=) + =p= (p= + 2s=)], 
~ = 0  

b.  = ~ ~= (2s.) ~- (3b=r~ + c=p.), c, = ~ ~=c= (2s=) 3 
(Z=O ~ 0  

(3p  a : 3 r  a - 2 s a ;  a=, b a ,  c a a r e  t h e  c o m p o n e n t s  o f  ~f(=)). 

Example. Since differences in the estimates of ~, on the basis of our method and the 
results of [6] are connected with the solution of the linearly elastic problem of calcula- 
tion of Aa*, we will make a quantitative comparison of Aa* computed by the method of condi- 
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tional moments of [6] and by the effective field method of [I]. For rigid spherical inclu- 
sions of the same size in an incompressible matrix we obtain from (2.2), (2.6), and (1.8) 

2S = 231 ( ~ * / ~ e  - -  1) = 5 (2 - -  31~18)  - 1  a n d  2s = ( 5 / 2  - -  ~) ( t  - -  ~)-~ 
by the method of conditional moments {curves 1 and 2 in Fig. i, respectively; the points 
represent the experimental data of [7] on the variations of the effective Newtonian visco- 
sity of suspensions in response to a growth in $, replotted in the coordinates s ~ ~ with 
the aid of (1.7)}. For spherical and flat spheroidal pores similar estimates have been 
compared in [2]. Figure 2 plots c,($) calculated from (2.6) and (3.2) for 09G2S steel with 
spherical pores of the same size and the following parameters (Pa): X 0 = 9.44"i0 l~ P0 = 
7.9"i0 I~ a0= -82.5"I0 l~ b 0 = -30.9"101~ , c o = -79.9"i0 z~ The value of c,(~) at ~ = 0.4 

on curve 1 in Fig. 2 is greater by 20% than the estimate by the method of conditional mo- 
ments [6]~ We should note that for a porous medium the ratio of c, values based on (2.6) 

and (3.2) to those calculated by the method of [6] is equal to the cube of s o . Therefore, 

the difference in estimates of c, by (2.6) and (3.2) and by [6] will grow as k increases 
and as the shape of the inclusions approaches a spheroid [2]. Indeed, for spherical pores 
and k 0 = ~, we show in Fig. 2 the values of c,/[c0(l - $)] ~ ~ (curves 2 and 3) calculated 
from formulas of [6] and from (2.6) and (3.2), respectively. 
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